

Hemoglobin (Structure, Oxygen and Carbon Dioxide, Transport, Abnormal Hemoglobins)

? HEMOGLOBIN

(Structure, Oxygen & CO₂ Transport, Oxygen Dissociation Curve)

This is written in clean MedMentor MBBS/PG style — crisp, conceptual, and ready for use in your platform.

? STRUCTURE OF HEMOGLOBIN

? Basic Composition

- Hemoglobin (Hb) is a **tetrameric protein**.
- Consists of **4 globin chains + 4 heme groups**.
- Each heme contains **protoporphyrin IX + Fe²⁺**.
- One molecule of Hb binds **4 O₂ molecules**.

? Adult Hemoglobins

- **HbA (????)** — main adult Hb (~97%).
- **HbA₂ (????)** — ~2%.
- **HbF (????)** — <1% in adults; predominant in fetus.

? Globin Chains

- Globin is a **protein** with helical regions.
- Each chain surrounds one **heme pocket**.
- Fe^{2+} is held by:
 - Proximal histidine (F8)
 - Distal histidine (E7) helps binding O_2 .

? Quaternary Structure

- Hb has **two $\alpha\beta$ dimers**.
- Exists in two states:
 - **T-state (Tense)**: low O_2 affinity
 - **R-state (Relaxed)**: high O_2 affinity
- Binding of O_2 shifts Hb **T \rightarrow R transition** (cooperative binding).

? TRANSPORT OF OXYGEN

? How much O_2 is carried?

- Each Hb carries **4 O_2 molecules** (one per heme iron).
- Hb carries **98% of total oxygen**; plasma carries 2%.

? Mechanism of O_2 Binding

- O₂ binds reversibly to Fe²⁺ without oxidation.
- Fe²⁺ remains in reduced state (oxyhemoglobin is NOT Fe³⁺).

Factors Affecting O₂ Binding (Bohr Effect)

- pH (acidic)
- CO₂
- Temperature
- 2,3-BPG
- Shift O₂ curve to the right (affinity, release).

TRANSPORT OF CARBON DIOXIDE

CO₂ is transported in three forms:

1. As Bicarbonate (HCO₃⁻) — 70%

- CO₂ + H₂O → H₂CO₃ → H⁺ + HCO₃⁻
- Enzyme: **Carbonic anhydrase** (RBC cytosol).

2. As Carbaminohemoglobin — 20%

- CO₂ binds to **terminal amino groups** of globin chains (not heme).
- Deoxygenated Hb carries more CO₂ (**Haldane effect**).

3. Dissolved CO₂ — 10%

- Directly dissolved in plasma.

OXYGEN DISSOCIATION CURVE (ODC)

The ODC is **sigmoid** due to **cooperative binding** of oxygen.

? Right Shift (? O₂ affinity — easier release)

Memory: **CADET** ? right shift

CO₂? ?

Acid ? (? pH)

DPG ? (2,3-BPG)

Exercise ?

Temperature ?

Seen in:

- Exercise
- Anemia
- High altitude
- Fever
- Acidosis (DKA, sepsis)

? Left Shift (? O₂ affinity — harder release)

- ? 2,3-BPG
- ? Temperature
- ? CO₂?

- ? pH (alkalosis)
- **HbF (fetal hemoglobin)**
- CO poisoning
- Methemoglobinemia

Left shift means **less O₂ delivered to tissues**.

? P50 Value (Very Important)

- **P50 = PO₂ at which Hb is 50% saturated.**
- Normal P50 = **26 mmHg**.

Interpretation:

- **Right shift:** ? P50
- **Left shift:** ? P50

? Fetal Hemoglobin (HbF)

- Structure: **????**
- Higher O₂ affinity due to **low 2,3-BPG binding**.
- Facilitates transfer of O₂ from mother to fetus.
- Curve is shifted **left**.

? Myoglobin vs Hemoglobin

- Myoglobin = **monomer**, hyperbolic curve, no cooperativity.
- Has **higher O₂ affinity** than Hb.
- Acts as O₂ reservoir in muscle.

? HEMOGLOBIN INTERACTION (ALLOSTERIC BEHAVIOR)

Hemoglobin is an **allosteric protein**, meaning its activity changes when molecules bind at sites other than the oxygen-binding site.

? 1. Cooperative Binding (O₂–O₂ Interaction)

- Binding of the **first O₂ increases the affinity** for the next O₂.
- Called **positive cooperativity**.
- Responsible for the **sigmoid shape** of the O₂ dissociation curve.

? 2. T-state ? R-state Transition

- Deoxygenated Hb = **T-state (tense)** ? low O₂ affinity.
- Oxygenated Hb = **R-state (relaxed)** ? high O₂ affinity.
- O₂ binding causes **conformational change** that breaks salt bridges ? R-form.

? 3. Interaction with Hydrogen Ions (H⁺)

- ? H⁺ (acidosis) stabilizes T-form ? Hb releases more O₂.

- This is the **Bohr effect**.

? 4. Interaction with CO?

- CO? binds to **terminal amino groups** ? carbaminohemoglobin.
- Stabilizes T-form ? promotes O? release (Haldane effect).

? 5. Interaction with 2,3-BPG

- 2,3-BPG binds between ?-chains ? stabilizes T-form ? ? O? affinity.
- Helps unloading of O? in tissues.

? EFFECT OF 2,3-BPG (KEY REGULATOR OF OXYGEN AFFINITY)

2,3-BPG is produced in RBCs via the **Rapoport–Luebering shunt**.

? Role

- Binds to the **central cavity** of deoxygenated Hb.
- Binds only to **?-chains** ? therefore:
 - HbA (????) ? strongly affected
 - HbF (????) ? weakly affected ? **higher O? affinity**

? Effects on Hemoglobin

- **Decreases hemoglobin's affinity for oxygen.**

- Shifts the O_2 dissociation curve to the right.
- Increases **P50** (more O_2 needed for 50% saturation).
- Improves O_2 delivery to tissues.

? Conditions with ? 2,3-BPG

- High altitude
- Anemia
- Hypoxia
- Chronic lung disease
- Exercise
- Hyperthyroidism

? Conditions with ? 2,3-BPG

- Stored blood (banked blood)
- Hypothermia
- HbF presence (poor binding of 2,3-BPG)
- Alkalosis

? ISOHYDRIC TRANSPORT OF CARBON DIOXIDE

Isohydric transport refers to **CO₂** being carried in blood without altering the pH **dramatically**, thanks to buffering by hemoglobin.

? Mechanism

1. CO₂ enters RBC.
2. Combined with water \rightarrow H₂CO₃ \rightarrow H⁺ + HCO₃⁻
 - Catalyzed by **carbonic anhydrase**.
3. H⁺ is buffered by **deoxygenated hemoglobin**.
 - Hb acts as a **buffer** \rightarrow prevents drastic change in pH.
4. HCO₃⁻ leaves RBC and is carried in plasma.

? Importance

- Allows **70% of CO₂** to be transported as bicarbonate without making the blood acidic.
- Hemoglobin binding of H⁺ is key.

? Relationship With O₂

- Deoxygenated Hb (in tissues) binds H⁺ better \rightarrow favors CO₂ transport.
- This is part of the **Haldane effect**.

? CHLORIDE SHIFT (HAMBURGER PHENOMENON)

This is the **exchange of bicarbonate and chloride ions** between RBCs and plasma to maintain electrical neutrality.

? At Tissues (High CO₂) – “Forward Chloride Shift”

1. CO₂ diffuses into RBC.
2. Converts to HCO₃⁻ + H⁺ (carbonic anhydrase).
3. HCO₃⁻ leaves RBC into plasma.
4. Cl⁻ enters RBC to maintain charge balance.

? RBC becomes **chloride-rich** in tissues.

? At Lungs (Low CO₂) – “Reverse Chloride Shift”

1. CO₂ is expelled from blood.
2. HCO₃⁻ enters RBC from plasma.
3. Cl⁻ moves out of RBC to maintain neutrality.
4. HCO₃⁻ + H⁺ → H₂CO₂ → CO₂ (exhaled).

? RBC loses chloride in lungs.

? Significance of Chloride Shift

- Maintains **electrical neutrality**.

- Enables **maximum transport of CO₂ as bicarbonate**.
- Essential for acid-base homeostasis.
- Occurs in **all RBCs during CO₂ transport**.

? FETAL HEMOGLOBIN (HbF)

? Structure

- HbF = **α₂γ₂**
- γ -chains replace β -chains of adult Hb.
- Predominant Hb in fetus and newborn.

? Key Properties

- **Higher affinity for oxygen** than HbA.
- Curve shifted **left**.
- Because 2,3-BPG binds poorly to γ -chains.
- Facilitates O₂ uptake from maternal blood.

? Physiological Importance

- Allows fetal RBCs to extract oxygen across the placenta.
- Protects fetus from low oxygen tension in utero.

? When does HbF disappear?

- HbF declines rapidly after birth.
- Major switch from **α β γ chains** completed by 6 months.
- Adult pattern (HbA) predominates thereafter.

? Conditions with Increased HbF

- β -thalassemia major
- Hereditary persistence of fetal Hb (HPFH)
- Sickle cell disease (after hydroxyurea therapy)

? HEMOGLOBIN DERIVATIVES

(Abnormal chemical forms of hemoglobin)

? 1. Oxyhemoglobin

- Hb + O₂
- Normal physiologic oxygenated form.

? 2. Deoxyhemoglobin

- Hb without oxygen.
- Found in venous blood.

? 3. Methemoglobin (MetHb)

- Hb where iron is **Fe³⁺** (ferric).

- Cannot bind oxygen.

? 4. Carboxyhemoglobin (CO-Hb)

- Hb bound to **carbon monoxide (CO)**.

? 5. Carbaminohemoglobin

- CO₂ bound to terminal NH₂ groups of globin chains.

? 6. Sulfhemoglobin

- Hb with sulfur atom incorporated.
- Irreversible.
- Seen with sulfur-containing drugs.

? 7. Cyanmethemoglobin

- MetHb + cyanide ion.
- Used in laboratory estimation of Hb.

? CARBOXYHEMOGLOBIN (CO-Hb)

(A highly important exam topic)

? Definition

Hemoglobin bound to **carbon monoxide**.

? Affinity

- Hb has **200–250 times higher affinity** for CO than for O₂.
- CO shifts the O₂ dissociation curve **left** ? reduced O₂ unloading.

? Features

- Causes **tissue hypoxia** without anemia.

- CO poisoning symptoms:

- Headache
- Cherry-red skin
- Confusion
- Seizures
- Coma

- Pulse oximetry is **normal** (false reading).

- CO-Hb gives blood a **bright red** color.

? Sources

- Car exhaust
- Fire/smoke inhalation
- Tobacco smoke

- Generators used in closed rooms

? Treatment

- 100% oxygen
- Hyperbaric oxygen (severe cases)
- Remove exposure

? METHEMOGLOBIN (Met-Hb)

? Definition

Hemoglobin with **iron oxidized to Fe³⁺ instead of Fe²⁺**.

Fe³⁺ **cannot bind O₂** → functional anemia.

? Causes

- Drugs/chemicals:
 - Nitrites
 - Dapsone
 - Nitrates
 - Aniline dyes
 - Local anesthetics (benzocaine)
- Congenital:

- Cytochrome b₅ reductase deficiency

? Clinical Features

- Cyanosis with **normal PaO₂**.
- Chocolate-brown colored blood.
- Low pulse oximetry readings (85% “methemoglobin saturation plateau”).
- Shortness of breath, headache, fatigue.

? Diagnosis

- Co-oximetry (gold standard).
- Methemoglobin level measurement.

? Treatment

- **Methylene blue** (reduces Fe³⁺ to Fe²⁺).
- Vitamin C (adjunct).
- Avoid causative drugs.

? KEY DIFFERENTIATION (Very High Yield)

CONDITION	IRON STATE	O ₂ BINDING	BLOOD COLOR	O ₂ CURVE
Oxy-Hb	Fe ²⁺	Yes	Bright red	Normal

CONDITION	IRON STATE	O ₂ BINDING	BLOOD COLOR	O ₂ CURVE
Deoxy-Hb	Fe ²⁺	No O ₂ bound	Dark red	Normal
Met-Hb	Fe ³⁺	Cannot bind O ₂	Chocolate brown	Left shift
CO-Hb	Fe ²⁺ + CO	O ₂ blocked	Bright red	Left shift

HEMOGLOBIN VARIANTS

Hemoglobin variants are **structural abnormalities** of globin chains due to **single amino acid substitutions** or deletions.

Examples of important variants:

- **HbS** (sickle cell hemoglobin) – ?6 Glu ? Val
- **HbC** – ?6 Glu ? Lys
- **HbE** – ?26 Glu ? Lys (common in NE India)
- **HbD-Punjab** – another ?-chain variant
- **Hb M** – oxidation of Fe²⁺ ? Fe³⁺ (methemoglobinemia)
- **HbF persistence** – Hereditary persistence of fetal Hb (HPFH)

Why variants cause disease:

- Affect **solubility, stability, or oxygen affinity** of Hb.

- Some variants cause **hemolysis, polymerization, or decreased oxygen delivery.**

? SICKLE CELL HEMOGLOBIN (HbS)

(Most important hemoglobinopathy)

? Genetic Defect

- Point mutation in β -globin gene: **Valine replaces Glutamic acid at position 6 (Glu \rightarrow Val).**
- Produces abnormal HbS.

? Mechanism of Sickling

- In low O₂ HbS polymerizes and forms **rigid, sickle-shaped RBCs.**
- Sickled cells cause:
 - Hemolysis
 - Vaso-occlusion
 - Microinfarcts

? Clinical Features

- Painful crises
- Avascular necrosis
- Acute chest syndrome

- Anemia
- Dactylitis in children
- Autosplenectomy ? Howell–Jolly bodies

? Lab Findings

- Sickle cells on smear
- ? Reticulocytes
- ? Indirect bilirubin
- ? LDH
- Positive sickling test

? Treatment

- **Hydroxyurea** ? ? HbF (reduces sickling)
- Blood transfusion
- Pain control
- Bone marrow transplant (curative)

? THALASSEMIAS

Genetic disorders causing **reduced synthesis** of α - or β -globin chains.

1. α -Thalassemia

Cause

- Gene deletion of α -globin genes (4 total).

Severity

- 1 gene deleted ? Silent carrier
- 2 deleted ? α -thalassemia trait
- 3 deleted ? HbH disease (?? tetramers)
- 4 deleted ? Hydrops fetalis (Hb Bart's; ??) ? fatal

2. β -Thalassemia

Cause

- Mutations causing decreased β -chain production.

Types

- ?? (partial reduction)
- ?? (complete absence)

β -Thalassemia Minor

- Mild anemia

- Very high HbA? (>3.5%)

? β -Thalassemia Major (Cooley's anemia)

- Severe microcytic anemia
- Extramedullary hematopoiesis ? chipmunk facies
- Splenomegaly
- High HbF levels
- Iron overload from transfusions

? Treatment

- Regular transfusions
- Iron chelation (deferoxamine)
- Bone marrow transplant (curative)

? MYOGLOBIN

? Structure

- **Monomer** (single polypeptide).
- Contains **one heme group** ? binds **one O₂**.

? Oxygen Binding

- Very high O₂ affinity.
- No cooperativity (hyperbolic curve).
- Acts as an **oxygen reservoir** in muscle.

? Clinical Importance

- **Myoglobinuria** seen in:
 - Rhabdomyolysis
 - Crush injuries
 - Severe muscle damage
- Causes **dark red/brown urine**.
- Can precipitate in kidneys ? acute renal failure.

? ANEMIAS

(From the hemoglobin perspective)

? Definition

Reduced **oxygen-carrying capacity** of blood.

? Classification Based on Hb Issues

? 1. Hemolytic Anemia

- Premature RBC destruction.
- Causes: HbS, HbC, G6PD deficiency, thalassemia, autoimmune.
- Features:
 - ? unconjugated bilirubin
 - ? LDH
 - ? haptoglobin
 - Reticulocytosis

? 2. Hypochromic Microcytic Anemia

- Reduced Hb synthesis ? small, pale RBCs.
- Causes:
 - Iron deficiency
 - Thalassemias
 - Sideroblastic anemia
 - Chronic disease

? 3. Normocytic Normochromic Anemia

- Acute blood loss
- Hemolysis
- Chronic kidney disease (? EPO)

? 4. Macrocytic Anemia

- Vitamin B12 or folate deficiency
- Alcoholism
- Liver disease
- Reticulocytosis

? KEY DIFFERENCES — HbS vs Thalassemia vs Myoglobin

FEATURE	HBS	THALASSEMIA	MYOGLOBIN
Defect	Structural mutation	Reduced synthesis	Structural monomer
O ₂ Affinity	Low	Normal/high	Very high
Curve	Right-shift & polymerization	Affected by chain imbalance	Hyperbolic

FEATURE	HBS	THALASSEMIA	MYOGLOBIN
Clinical	Pain crises, hemolysis	Microcytosis, marrow expansion	Muscle oxygen store

? IMPORTANT POINTS TO REMEMBER (Whole Hemoglobin Chapter)

? Structure of Hemoglobin

- Hb is a **tetramer**: ??? in adults.
- Each chain contains a **heme group with Fe²⁺**.
- **Fe²⁺** binds O₂; **Fe³⁺** cannot.
- Exists in two states:
 - **T-state** (tense, low O₂ affinity)
 - **R-state** (relaxed, high O₂ affinity)

? Oxygen Transport

- Hb carries **98% of oxygen** in blood.
- O₂ binding is **cooperative** ? sigmoid O₂ dissociation curve.

- Exchange of one O₂ changes affinity of other subunits.

? Oxygen Dissociation Curve (ODC)

- Sigmoid shape due to **cooperative binding**.
- **Right shift (↑ affinity, ↑ O₂ release):**
 - ↑ CO₂, ↑ H⁺ (↑ pH), ↑ Temperature, ↑ 2,3-BPG, Exercise.
- **Left shift (↓ affinity):**
 - HbF, CO-Hb, Met-Hb, ↑ CO₂, ↑ Temperature, ↑ 2,3-BPG.
- **P₅₀ = 26 mmHg**; increased by right shift.

? Bohr Effect

- ↑ CO₂ or ↑ pH ↑ Hb releases O₂ (right shift).
- Helps oxygen delivery to tissues.

? Haldane Effect

- Deoxygenated Hb binds **more CO₂ and H⁺**.
- Oxygenated Hb releases CO₂.
- Important for CO₂ unloading in lungs.

2,3-BPG (Key Modulator)

- Produced in RBCs via **Rapoport–Luebering shunt**.
- Binds to **α -chains** to stabilize T-state and O₂ affinity.
- in high altitude, hypoxia, anemia, exercise.
- in stored blood, alkalosis, HbF presence (α -chains do not bind it).

Isohydric Transport of CO₂

- $\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{HCO}_3^-$ (carbonic anhydrase).
- H⁺ buffered by deoxygenated Hb** prevents acidosis.
- Allows 70% of CO₂ transport as bicarbonate.

Chloride Shift

- At tissues: HCO₃⁻ leaves RBC and Cl⁻ enters (forward shift).
- At lungs: HCO₃⁻ enters RBC and Cl⁻ exits (reverse shift).
- Maintains electrical neutrality.

Fetal Hemoglobin (HbF)

- Structure: $\alpha_2\beta_2$.

- Binds O₂ more strongly (left shift).
- Poor interaction with 2,3-BPG.
- High levels in fetus ? facilitates placental oxygen transfer.
- ? in HPFH, ?-thalassemia, hydroxyurea therapy.

? Hemoglobin Derivatives

- **Oxyhemoglobin:** normal oxygenated form.
- **Deoxyhemoglobin:** venous blood.
- **Carboxyhemoglobin:** Hb + CO (bright red).
- **Methemoglobin:** Fe³⁺ form, cannot bind O₂.
- **Carbaminohemoglobin:** Hb + CO₂ (globin binding).
- **Sulfhemoglobin:** irreversible sulfur binding.

? Carboxyhemoglobin (CO-Hb)

- CO binds Hb **200–250 times** more strongly than O₂.
- Causes tissue hypoxia despite normal PaO₂.
- Pulse oximeter is falsely normal.
- Treat with **100% oxygen** or hyperbaric O₂.

- Seen in smoke inhalation, exhaust exposure, smoking.

? Methemoglobin (Met-Hb)

- Iron is oxidized to **Fe³⁺**? ? cannot bind O₂.
- Blood becomes **chocolate brown**.
- Causes: nitrates, nitrites, dapsone, benzocaine.
- Treated with **methylene blue**.

? Hemoglobin Variants

- Structural changes in globin chains.
- Examples: HbS, HbC, HbE, HbD-Punjab, HbM.
- May affect solubility, stability, or O₂ affinity.

? Sickle Cell Hemoglobin (HbS)

- Mutation: **?6 Glu → Val**.
- Polymerizes in low O₂? ? sickling.
- Causes hemolysis, vaso-occlusion, pain crises.
- HbF reduces sickling ? hydroxyurea benefits.

- Spleen becomes auto-infarcted ? Howell–Jolly bodies.

? Thalassemias

- ? Synthesis of ?- or ?-globin chains.

? ?-Thalassemia

- One gene deletion ? silent carrier.
- Four deletions ? Hb Bart's ? hydrops fetalis (fatal).

? ?-Thalassemia

- ? ?-chain synthesis.
- Major: severe anemia, crew-cut skull, hepatosplenomegaly, ? HbF.
- Minor: mild anemia, ? HbA? (>3.5%).

? Myoglobin

- Monomeric, one heme group.
- **Very high O₂ affinity** (hyperbolic curve).
- O₂ storage protein in muscle.

- Elevated in rhabdomyolysis ? myoglobinuria ? renal damage.

? Anemias Related to Hemoglobin Issues

- **Hemolytic anemia:** HbS, G6PD deficiency, thalassemia.
- **Microcytic anemia:** iron deficiency, β -thalassemia, chronic disease.
- **Normocytic anemia:** acute blood loss, CKD.
- **Macrocytic anemia:** B12/folate deficiency.

? Ultra-Short Rapid Revision

- HbA = ????; HbF = ???? (left shift).
- P50 = 26 mmHg.
- CO binds Hb 200–250 \times stronger than O₂.
- Met-Hb = Fe³⁺; treat with methylene blue.
- Right shift = CADET ? (CO₂, Acid, DPG, Exercise, Temp).
- HbS = Glu \rightarrow Val (?6).
- β -thalassemia major ? ? HbF, skeletal deformities.
- Chloride shift = HCO₃⁻ \leftrightarrow Cl⁻ exchange.
- Myoglobin = monomer, hyperbolic curve, high affinity.

? MCQs — Hemoglobin (Whole Chapter)

1. The quaternary structure of adult hemoglobin (HbA) is:

- A. ?????
- B. ?????
- C. ?????
- D. ??

Answer: C

2. Iron in heme that binds oxygen must be in the:

- A. Ferric state
- B. **Ferrous state**
- C. Elemental state
- D. Ferritin-bound state

Answer: B

3. The sigmoid shape of the oxygen dissociation curve is due to:

- A. Bohr effect
- B. Haldane effect
- C. **Cooperative binding of oxygen**
- D. Binding of CO?

Answer: C

4. A right shift in the O₂ dissociation curve indicates:

- A. Increased affinity for oxygen
- B. Left shift of curve
- C. Reduced tissue oxygenation
- D. **Reduced affinity ? increased O₂ delivery to tissues**

Answer: D

5. Which of the following causes a right shift of the O₂ curve?

- A. Low temperature
- B. High pH
- C. Low 2,3-BPG
- D. High CO₂**

Answer: D

6. P50 is increased when:

- A. Affinity for O₂ is increased
- B. Affinity for O₂ is decreased**
- C. HbF is dominant
- D. CO is bound

Answer: B

7. 2,3-BPG binds to which part of hemoglobin?

- A. Heme iron
- B. β -chains
- C. β -chains in the central cavity**
- D. β -chains

Answer: C

8. 2,3-BPG has the weakest binding with:

- A. HbA
- B. HbA₂
- C. HbF**
- D. Methemoglobin

Answer: C

9. Isohydric transport refers to:

- A. CO bound to hemoglobin
- B. Shifting of chloride across RBC membrane
- C. CO₂ dissolved in plasma
- D. CO₂ transport as HCO₃⁻ while H⁺ is buffered by hemoglobin**

Answer: D

10. Chloride shift at the tissues results in:

- A. Chloride leaving RBC
- B. Chloride entering RBC**
- C. Potassium entering RBC
- D. CO₂ entering plasma

Answer: B

11. HbF has higher oxygen affinity because:

- A. It has more β -chains
- B. It has more iron
- C. It binds poorly to 2,3-BPG**
- D. It contains ferric iron

Answer: C

12. Which form of hemoglobin cannot bind oxygen?

- A. Oxyhemoglobin
- B. Deoxyhemoglobin
- C. Carboxyhemoglobin
- D. Methemoglobin (Fe³⁺)**

Answer: D

13. Carboxyhemoglobin forms due to:

- A. Nitrite exposure
- B. Iron deficiency
- C. Carbon monoxide exposure**
- D. ATP depletion in RBCs

Answer: C

14. Carboxyhemoglobin shifts O₂ curve to:

- A. Right
- B. Left**
- C. Flat
- D. Hyperbolic

Answer: B

15. The mutation in sickle cell disease is:

- A. ?26 Glu ? Lys
- B. ?6 Glu ? Val**
- C. ?6 Glu ? Asp
- D. ?1 deletion

Answer: B

16. Sickling occurs most readily during:

- A. High oxygen tension
- B. Cold exposure only
- C. Low oxygen tension**
- D. High HbF

Answer: C

17. Thalassemias are disorders of:

- A. Heme synthesis
- B. Iron absorption
- C. Globin chain synthesis**
- D. Chloride transport

Answer: C

18. β -thalassemia major typically shows:

- A. High HbA?
- B. Normal HbF
- C. Markedly increased HbF**
- D. High 2,3-BPG deficiency

Answer: C

19. β -thalassemia with all four β -genes deleted produces:

- A. HbH disease
- B. HbC disease
- C. Hydrops fetalis (Hb Bart's)**
- D. Mild anemia

Answer: C

20. Myoglobin differs from hemoglobin because:

- A. It has 4 heme groups
- B. It is a tetramer
- C. It has a hyperbolic O₂ curve**
- D. It has lower affinity for oxygen

Answer: C

21. Myoglobinuria is most commonly seen in:

- A. Malaria
- B. Iron deficiency
- C. Rhabdomyolysis**
- D. Pneumonia

Answer: C

22. A patient shows chocolate brown blood and normal PaO₂. Diagnosis?

- A. Carboxyhemoglobin
- B. Anemia
- C. Methemoglobinemia**
- D. HbE disease

Answer: C

23. Treatment of methemoglobinemia is:

- A. Hydroxyurea
- B. Blood transfusion
- C. Iron therapy
- D. Methylene blue**

Answer: D

24. In CO poisoning, pulse oximetry:

- A. Falls to zero
- B. Shows high CO₂
- C. May remain falsely normal**
- D. Shows low pH

Answer: C

25. Which hemoglobinopathy gives a "crew-cut skull" on X-ray?

- A. HbS
- B. HbC
- C. β -Thalassemia major
- D. HbE trait

Answer: C

? CLINICAL CASE-BASED QUESTIONS (Whole Hemoglobin Chapter)

1. A 22-year-old man presents with severe chest pain, bone pain, and fatigue. Smear shows sickled RBCs. Hemoglobin electrophoresis shows increased HbS and elevated HbF.

Diagnosis: Sickle cell disease

Mechanism: β 6 Glu \rightarrow Val mutation \rightarrow polymerization of HbS in low O₂

Why high HbF helps: HbF inhibits sickling

2. A 6-month-old infant has severe anemia, frontal bossing, hepatosplenomegaly, and “crew-cut” skull X-ray. Hb electrophoresis shows very high HbF.

Diagnosis: β -Thalassemia major

Mechanism: Absent β -chains \rightarrow excess α -chains \rightarrow ineffective erythropoiesis

3. A newborn presents with hydrops fetalis and dies hours after birth. Hemoglobin electrophoresis shows Hb Bart's (??).

Diagnosis: β -Thalassemia — deletion of all four β -genes

Mechanism: No β -chains \rightarrow Hb Bart's has extremely high O₂ affinity \rightarrow no O₂ delivery

4. A mountain climber at 14,000 ft experiences tachycardia and dyspnea. Labs show increased 2,3-BPG.

Diagnosis: Physiological adaptation to high altitude

Mechanism: 2,3-BPG ? ? right shift ? enhanced O₂ release

5. A patient trapped in a house fire has headache, dizziness, and bright red skin. Pulse oximeter shows 100% saturation.

Diagnosis: CO poisoning (Carboxyhemoglobin)

Mechanism: CO binds Hb 250x stronger than O₂ ? tissue hypoxia

Treatment: 100% O₂ or hyperbaric O₂

6. A child eats nitrate-contaminated well water. Blood sample appears chocolate-brown. Pulse ox ~85% regardless of O₂.

Diagnosis: Methemoglobinemia (Fe³⁺ state)

Mechanism: Oxidation of Fe²⁺ ? Fe³⁺

Treatment: Methylene blue

7. A neonate has persistent cyanosis since birth but normal PaO₂. Family history positive.

Diagnosis: Congenital methemoglobinemia

Mechanism: Cytochrome b₅ reductase deficiency

8. A patient with pneumonia shows right shift of O₂ dissociation curve. Which factor explains this?

Diagnosis: Tissue hypoxia due to infection

Mechanism: Fever + acidosis ? O₂ affinity ? better tissue delivery

9. A patient with COPD has elevated carbaminohemoglobin.

Diagnosis: Chronic CO₂ retention

Mechanism: CO₂ binding to amino terminals of globin chains

Relevance: Haldane effect ? deoxygenated Hb binds more CO₂

10. A man collapses after using benzocaine throat spray. Cyanosis does not improve with oxygen.

Diagnosis: Benzocaine-induced methemoglobinemia

Reason: Fe^{3+} cannot bind oxygen

Treatment: Methylene blue

11. A child has pallor, fatigue, and microcytic hypochromic RBCs. Iron therapy shows no improvement. HbA_{1c} is elevated.

Diagnosis: β -Thalassemia minor

Mechanism: Reduced β -chain synthesis \Rightarrow compensatory \Rightarrow HbA_{1c}

12. An adult presents with dark urine after a crush injury. Serum CK is high.

Diagnosis: Myoglobinuria due to rhabdomyolysis

Mechanism: Myoglobin released from muscle \Rightarrow renal toxicity

13. A 25-year-old athlete has high myoglobin in muscle but normal hemoglobin.

Diagnosis: Physiological adaptation

Mechanism: Myoglobin acts as muscle O₂ reservoir

14. A smoker has chronically elevated carboxyhemoglobin.

Diagnosis: CO exposure from cigarettes

Result: Tissue hypoxia despite normal Hb

Long-term risk: Polycythemia (compensatory)

15. A patient with severe anemia has normal MCV and normal RDW. Hemoglobin is low but RBC count normal.

Diagnosis: Dilutional/acute blood loss anemia

Mechanism: RBCs normal size; loss due to hemorrhage

16. A baby born to a diabetic mother shows oxygen saturation drop despite normal PaO₂. Hb electrophoresis shows high HbF.

Diagnosis: High fetal hemoglobin level

Mechanism: HbF has high O₂ affinity ? less O₂ released to tissues

17. A patient has dyspnea and confusion after taking dapsone. Blood is chocolate-brown.

Diagnosis: Methemoglobinemia

Mechanism: Oxidation of Fe²⁺ ? Fe³⁺

Best test: Co-oximetry

18. A young man with G6PD deficiency develops severe jaundice after malaria treatment.

Diagnosis: Hemolytic anemia

Mechanism: Hb breakdown ? unconjugated bilirubin

19. A child from NE India presents with mild anemia and target cells on smear. Hb electrophoresis shows HbE.

Diagnosis: HbE disease

Mechanism: ?26 Glu ? Lys mutation

Prevalent in: Assam, Bengal, Thailand

20. A patient has cyanosis, but PaO₂ is normal and pulse oximetry shows 85–88% plateau.

Diagnosis: Methemoglobinemia

Clue: Saturation plateau at 85% is diagnostic

? VIVA VOCE — Hemoglobin (Whole Chapter)

1. What is the basic structure of hemoglobin?

A tetramer of **two α and two β chains**, each containing a heme group with Fe^{2+} .

2. Why must iron be in the Fe^{2+} state?

Only Fe^{2+} can bind oxygen; Fe^{3+} cannot.

3. What bonds hold O₂ in hemoglobin?

Reversible coordination bond between O₂ and Fe^{2+} in heme.

4. What is the T-state of hemoglobin?

Tense state ? **low oxygen affinity**.

5. What is the R-state?

Relaxed state ? **high oxygen affinity**.

6. What causes the sigmoid shape of the O₂ dissociation curve?

Cooperative binding of oxygen.

7. What is P50?

PO₂ at which Hb is **50% saturated**; normal ~26 mmHg.

8. What does an increased P50 indicate?

Decreased oxygen affinity (right shift).

9. What shifts the O₂ curve to the right?

? CO₂, ? H⁺, ? Temperature, ? 2,3-BPG.

10. What is the Bohr effect?

H₂ and CO₂ decrease Hb's O₂ affinity & O₂ release in tissues.

11. What is the Haldane effect?

Oxygenated blood carries less CO₂; deoxygenated blood carries more.

12. What is the role of 2,3-BPG?

Binds β -chains & stabilizes T-state & **reduces O₂ affinity**.

13. Why does HbF have higher O₂ affinity than HbA?

HbF (????) binds 2,3-BPG weakly & O₂ affinity rises & left shift.

14. What is the Rapoport–Luebering shunt?

Pathway in RBCs producing **2,3-BPG**.

15. What is carbaminohemoglobin?

CO₂ bound to terminal **amino groups** of globin chains.

16. What is isohydric transport?

Transport of CO₂ as **HCO₃⁻** while H₂ is buffered by Hb.

17. What is the chloride shift?

Exchange of **HCO₃⁻** and **Cl⁻** across RBC membrane for neutrality.

18. What is HbF useful for clinically?

Protects against sickling & increased by **hydroxyurea** in sickle cell disease.

19. Name hemoglobin derivatives.

Oxy-Hb, Deoxy-Hb, **Carboxy-Hb**, **Met-Hb**, Sulf-Hb, Carbamino-Hb.

20. What is carboxyhemoglobin?

Hb combined with **carbon monoxide**.

21. Why is CO dangerous?

CO binds Hb **200–250x** stronger than O₂ ? severe tissue hypoxia.

22. What is the treatment of CO poisoning?

100% oxygen or hyperbaric oxygen.

23. What is methemoglobin?

Hemoglobin with iron in **Fe³⁺** state ? cannot bind oxygen.

24. What causes methemoglobinemia?

Nitrates, nitrites, benzocaine, dapsone, aniline dyes.

25. What color is blood in methemoglobinemia?

Chocolate-brown.

26. Treatment of methemoglobinemia?

Methylene blue.

27. What is the mutation in sickle cell disease?

?6 Glutamic acid ? **Valine**.

28. Why do RBCs sickle in HbS disease?

HbS polymerizes in **low O₂**, forming rigid fibers.

29. What protects infants with sickle cell disease early in life?

High levels of **HbF**.

30. What is Howell–Jolly body?

Nuclear remnants seen after **autosplenectomy** in sickle cell.

31. What is the defect in thalassemias?

Reduced **synthesis** of α - or β -globin chains.

32. What is elevated in β -thalassemia minor?

HbA₂ (>3.5%).

33. What is HbH?

$\alpha\alpha\alpha\alpha$ tetramers seen in β -thalassemia (3 gene deletion).

34. What forms in complete β -gene deletion (4 genes)?

Hb Bart's (??) causes **hydrops fetalis**.

35. Why is HbF increased in β -thalassemia major?

Compensation due to absent β -chains.

36. What differentiates myoglobin from hemoglobin?

Myoglobin is **monomeric**, binds one O₂, and has hyperbolic curve.

37. What is myoglobinuria?

Myoglobin in urine after muscle damage (rhabdomyolysis).

38. What type of anemia is caused by thalassemia?

Microcytic hypochromic anemia.

39. Why is stored blood poor at O₂ delivery?

Stored RBCs have **low 2,3-BPG** ? left shift.

40. Which form of Hb cannot bind oxygen?

Methemoglobin (Fe³⁺?).