

Radiological and Imaging Procedures

Radiological and Imaging Procedures

Introduction

Radiological imaging of the abdomen and pelvis provides essential diagnostic information about the position, shape, and pathology of internal organs. Common methods include plain radiograms (X-rays), barium studies, and pyelography.

Plain Radiogram of Abdomen (KUB Film)

Purpose: To visualize bones, soft tissues, gas, and calcifications.

Types:

- *Straight film:* For acute abdomen without preparation.
- *Scout film:* Taken before a contrast study.
- *KUB film:* Focuses on kidneys, ureters, and bladder.

Preparation:

- In emergencies — no preparation.
- For routine studies — fasting for 12 hours, use of antiflatulents and laxatives to reduce bowel gas.

Structures Seen:

- **Bony shadows:** Lower ribs, lumbar vertebrae, sacrum, hip bones.

- **Soft tissue shadows:** Diaphragm, psoas muscles, kidneys, liver, spleen.
- **Gas shadows:** Air under left diaphragm (stomach fundus), intestinal gas, faecal patterns.
- **Abnormal findings:** Free gas (perforation), calcified stones, abnormal soft-tissue masses

Volume 2, BD Chaurasia's Human ...

Alimentary Canal (Barium Studies)

Contrast Medium:

Barium sulphate suspension outlines the mucosa of the gastrointestinal tract. It is **radio-opaque**, non-toxic, and not absorbed by the gut

Volume 2, BD Chaurasia's Human ...

Barium Swallow

Procedure:

- Patient swallows 50% barium sulphate suspension 2–3 times while standing under fluoroscopy.

Purpose: To visualize the **oesophagus**, especially its relation to the aortic arch, left bronchus, and left atrium.

Findings: Left atrial enlargement compresses the oesophagus posteriorly

Volume 2, BD Chaurasia's Human ...

Barium Meal Examination

Preparation:

- Patient fasts for **12 hours** before examination.

Observation:

- **Stomach:** Triangular shadow below left diaphragm, showing peristaltic waves and rate of emptying.
- **Duodenum:** Duodenal cap and feathery pattern due to mucosal folds.
- **Jejunum and ileum:** Feathery pattern in jejunum, smooth shadow in terminal ileum.
- **Large intestine:** Shows haustral markings; appendix may appear faintly

Volume 2, BD Chaurasia's Human ...

.

Barium Enema

Preparation:

- Mild laxative two nights before; warm-water enema on examination day.

Contrast Medium:

- About **2 litres of barium sulphate** introduced via anus until it reaches the ileocaecal valve.

Findings:

- Colon shows **hastrations**; rectum and sigmoid colon are dilated.

- **Double-contrast method:** After partial evacuation, air is introduced to enhance mucosal details

Volume 2, BD Chaurasia's Human ...

Pyelography (Urography)

Definition: Visualization of the urinary tract using a radiopaque dye.

Types:

1. **Excretory (Intravenous) Pyelography:** Dye injected intravenously (e.g., urograffin, Conray).

- **Preparation:** Fasting 8 hours, no fluids, bladder emptied before injection.
- **Exposures:** Taken at 5, 15, and 30 minutes post-injection.
- **Findings:** Minor calyces (cup-shaped), renal pelvis (funnel-shaped), ureter course visible along lumbar transverse processes, bladder (oval/triangular).

2. **Retrograde (Instrumental) Pyelography:**

- Dye introduced **via ureteric catheter** through a cystoscope for direct visualization of the urinary tract

Radiological and Imaging Procedures (Continued)

Excretory (Intravenous or Descending) Pyelography

Definition:

This procedure demonstrates the urinary tract by intravenous injection of a **water-soluble**

iodinated contrast medium (e.g., Urograffin, Conray). The contrast is excreted through the kidneys, outlining the pelvicalyceal system, ureters, and urinary bladder on X-rays.

Preparation:

- Patient fasts for **8–12 hours** before the procedure.
- Laxatives and fluids are restricted to reduce bowel gas shadows.
- The bladder should be **emptied immediately before** the study.

Procedure:

1. Inject the contrast intravenously.
2. Serial radiographs are taken at **5, 15, and 30 minutes** after injection.
3. Later films may be taken to visualize **delayed excretion** in obstructed cases.

Findings:

- **Minor calyces:** Appear cup-shaped, forming the calyceal pattern.
- **Major calyces:** Funnel-shaped structures merging into the renal pelvis.
- **Renal pelvis:** Triangular or funnel-shaped, continuous with the ureter.
- **Ureter:** Narrow tubular shadow descending along the **tips of the lumbar transverse processes.**
- **Bladder:** Pear-shaped shadow in the pelvic cavity, with filling defects suggesting stones or tumors.

Clinical Uses:

- Detection of **renal calculi, hydronephrosis, ureteric obstruction, and bladder pathology.**
- Helps assess **renal function** and the patency of the urinary tract.

Retrograde (Instrumental or Ascending) Pyelography

Definition:

In this technique, contrast medium is **introduced directly into the ureter** through a **ureteric catheter** passed via a cystoscope into the bladder. It allows visualization of the **renal pelvis and ureter** when intravenous excretion is inadequate.

Procedure:

1. Performed under **local or spinal anaesthesia.**
2. A cystoscope is passed into the bladder, and a fine catheter is introduced into the **ureteric orifice.**
3. Contrast medium is injected **slowly**, and X-rays are taken immediately.

Findings:

- Outlines the **ureter and renal pelvis** in great detail.
- Detects **strictures, calculi, diverticula**, or any structural abnormality.

Advantages:

- Provides **sharp, high-resolution images** of the collecting system.
- Not dependent on renal function.

Disadvantages:

- **Invasive** and may cause **urinary infection or trauma** to the mucosa.

Biliary Apparatus (Ultrasonography)

Principle:

Ultrasound uses **high-frequency sound waves** to create images of the liver, gallbladder, bile ducts, and pancreas. It is **non-invasive, safe, and does not require contrast media**.

Procedure:

- Conducted after **6–8 hours of fasting** to reduce bowel gas and allow gallbladder distension.
- The transducer is placed over the right upper quadrant and subcostal region.

Findings:

- **Liver:** Uniform echotexture; enlargement or focal lesions may be noted.
- **Gallbladder:** Thin-walled, anechoic sac; stones appear as **echogenic foci with posterior acoustic shadowing**.
- **Common bile duct:** Measured normally up to **6 mm in diameter**; dilatation suggests obstruction.
- **Pancreas:** Echogenic structure lying transversely below the stomach.

Clinical Uses:

- Diagnosis of **cholelithiasis, cholecystitis, biliary obstruction, and liver abscess or metastasis**.

Hysterosalpingography (HSG)

Definition:

A radiographic procedure to visualize the **uterine cavity and fallopian tubes** using a **radio-opaque contrast medium**.

Purpose:

- Commonly performed to investigate **infertility** and assess **tubal patency**.
- Also helps detect **uterine malformations, adhesions, or intrauterine fibroids**.

Procedure:

1. Performed after menstruation (around **day 8–10 of the cycle**) to avoid interference from endometrial shedding or pregnancy.
2. A **speculum** is used to expose the cervix, and a **cannula** is inserted into the cervical canal.
3. Contrast medium is injected slowly while radiographs are taken.
4. The dye outlines the **uterine cavity**, then flows into the **fallopian tubes**, and finally spills into the **peritoneal cavity** if the tubes are patent.

Findings:

- **Normal study:** Triangular uterine shadow with bilateral tubal outlines and free peritoneal spill.
- **Blocked tubes:** Dye fails to pass beyond the point of obstruction.
- **Uterine anomalies:** Septate or bicornuate patterns visible.

Clinical Importance:

- Valuable for diagnosing **tubal obstruction, uterine anomalies, intrauterine adhesions**, and post-surgical evaluation of tubal ligation or reconstruction.